Fundamentals of Mathematics Spring 2007, Proof 20 Andrew Cheong

Show directly from the definition of a metric that the function $d: \mathbb{R}^2 \to \mathbb{R}$ defined by

$$d(x,y) = |x - y|, \forall (x,y) \in \mathbb{R}^2$$

is a metric on \mathbb{R} .

Proof. It suffices to show that the function d(x, y) satisfies the following axioms:

- (i) $(\forall x, y \in \mathbb{R})$ $d(x, y) \ge 0$ with equality if and only if x = y,
- (ii) $(\forall x, y \in \mathbb{R}) \ d(x, y) = d(y, x),$
- (iii) $(\forall x, y, z \in \mathbb{R})$ $d(x, y) \le d(x, z) + d(z, y)$.

First, we argue (i). By definition, for all $z \in \mathcal{F}$, if $z \geq 0$, then $|z| = z \geq 0$. Otherwise, z must be less than 0, but still $|z| = -z \geq 0$. Thus, $|z| \geq 0$, $\forall z \in \mathcal{F}$. It follows that $d(x,y) = |x-y| \geq 0$. Furthermore, it is clear that |x-y| = 0 if and only if x-y=0, or, x=y.

Second, we argue (ii). It has been shown that |-z| = |z|, $\forall z \in \mathcal{F}$. Thus, we may write,

$$d(x,y) = |x - y| = |-(-x + y)| = |-x + y| = |y - x| = d(y,x).$$

Third, we argue (iii). It suffices to show that $|x-y| \le |x-z| + |z-y|$. Using the triangle inequality, we may write,

$$|x-y| = |x-z+z-y| = |(x-z)+(z-y)| \le |x-z|+|z-y|.$$

This completes the proof.

¹Refer to workbook problem 4.2.9.